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Abstract

We introduce a highly efficient magneto-static field
solver for the design of low frequency lossless planar
circuit elements with arbitrary geometry. The field
solver is based on a finite difference formulation of a
scalar magnetic potential, using potential partitioning
surfaces (PPS). We present numerical results at the
examples of various planar circuit elements.

Introduction

For the design of planar circuit elements the given
structures are mostly extracted to a lumped element
circuit model. In many applications, the structures are
considered in a low frequency range in which the
lumped elements of the model are nearly independant
of the frequency. This given, the electromagnetic
properties of the planar circuit elements can be
described by considering the electro- and magneto-
static fields in the structures. The given circuit ele-
ments may have a complicated geometry. With that a
flexible CAD-tool for the efficient simulation of the
static fields in lossless planar circuit structures with
arbitrary geometry is required.

The demand for a method of simulating the field in
structures with arbitrary geometry leads to a space
discretizing method like the Finite-Difference method
[1,2]. The structure of the circuit elements is discreti-
zed according to Yee's scheme [2]. For the simulation
of the electro-static field Maxwells equations are
reduced to a Poisson-equation of the electro-static
potential. This reduction of considering only a scalar
potential instead of the three components of the
electric field leads to considerable savements in com-
putation time and storage.

While the electro-static field can be calculated in a
fast way by means of a scalar potential the calculati-
on of the magnetic field can not be performed directly
in such a simple way. This is because, in contrast to
the electric field, the contour integral of the magnetic
field does not disappear if a conductor is enclosed.
Thus in general, this would mean to calculate the field
in terms of three components which makes the com-
putational effort increase. The law of Biot-Savart can
not be used for the calculation because the current
distribution is unknown.

The PPS-Finite-Difference field solver

In this contribution we present a PPS-Finite-
Difference (PPS-FD) field solver for the efficient
simulation of the magneto-static field in arbitrary
lossless planar circuit structures. Compared with a
Finite Difference fullwave analysis the simulation of
the magnetic field with the PPS-FD solver requires
less then 5 % of the CPU-time and 33 % in memory.
The solver is also applicable for a hybrid dynamic-
static Finite-Diference method for efficient field simu-
lation at higher frequencies, as presented in [3]. The
PPS-FD-solver is based on the introduction of poten-
tial partitioning surfaces (PPS) into the structure,
connecting each conductor in the structure with the
outer boundary in a way that each integration path
around the conducting material crosses this potential
partitioning surface. Fulfilling this requirement the
choice of the exact position of the PPS is arbitrary.
Assuming the case of a lossless three-dimensional
structure, the consideration of the field is reduced to
the spatial region around the conducting material.
This region is cut by the PPS so that the resulting
subregion is bordered by two more surfaces which are
both sides of the partitioning surface. In this new
defined domain the magnetic field is irrotational and
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hence it can be described by a scalar magnetic poten-
tial M, in analogy to the electro-static case:

§Hds:0 = H=-gadM )
C

For the description of the potential in the subregions,
the divergence free magnetic field yields a simple
differential equation which leads to a fast numerical
algorithm for the calculation of the potential M.

div(p grad M)=0 @)

The boundary conditions of the field along electric
and magnetic walls are defined in a dual way to the
electro-static case. The integration of the field around
a conductor from one side of the PPS to its other side
yields a step of the potential when passing this PPS.

Fig.1:

Example of incorporation of a potential parti-
tioning surface (PPS) into a spiral structure.

Due to Ampere's law, the difference between the po-
tential on one side and the other side of the parti-
tioning surface is equivalent to the current in the con-
ductor [4]. Thus, the integration of the magnetic field
from a point P on one side of the partitioning surface
to the point P* on the other side yields the difference
of the potentials M at these points (Fig 1). This means
that there is a step in potential which has the value of
the current in the conductor.
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Fig. 1 shows an example of incorporation of a poten-
tial partitioning surface (PPS) into a spiral structure.
The PPS conects the conductor to the ground plane
completely. Crossing PPS” are possible. a,b: The
integration of H arround the current I leads to a po-
tential step of the value 1. c: The Integration arround
two currents, passing the integration path in the same
direction leads to two potential steps of the value I. e:
The integration arround two currents I, passing the

integration path in opposite direction leads to two
potential steps of the values I and -I. With that the
Inbegration around a conductor is allways put in re-
spect in the right way.

While the potential is non-continuous at the parti-
tioning surface, all the derivatives have to be conti-
nuous. This results from the requirement that the
magnetic field distribution is independent of the
choice of the local position of the potential parti-
tioning surface at the conductor.

Qltmin g I ~ al+m+nM | @
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(for I,m,n>0). Those properties lead to the unique
description of the magnetic potential. The calculation
of the potential and the magnetic field can now be
performed in a fast numerical way. The differential
equation (2) of the potential is realized in the Finite-
Differencemethod in a cartesian mesh of elementary
cells. The potentials M are defined on the hyphens of
the mesh cells. Applying equation (2) in Finite-
Difference form of a linear equation to each mesh cell
of the given structure yields a solvable system of
equations. Additionally potentials at the boundaries of
the given structure are extracted by the boundary
conditions: While magnetic walls are aequipotential
surfaces with given potential M, the relations between
neighboring potentials on electric walls are given by
symmetrical characteristics.

Also the steps in potential are realized as a source
vector in the equation system. The system is then
analoguous to the Finite-Difference description sy-
stem for the electro-static field. The solution of the
magneto-static system of equations yields a vector in
which all the potentials M of the structures cells are
included. After that the magneto-static field can be
determinated by the Finite-Difference quotient of the
magnetic potential distribution according to eqn. (1).

Numerical results

In the following we present numerical results of the
PPS-FD solver. First we consider the magneto-static
field in a coplanar spiral inductor on silicium
substrate. As in the example of Fig.1, the PPS con-
nects the spiral conductor vertically to the ground
plane. The conductor route leading to the center of the
spiral is crossed by the spiral in form of two air-
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bridges. By following the spiral route the potential
partitioning surface crosses itself below the air-
bridges. In Fig. 2. we see the spiral structure with its
discretization steps. The discretization in the inner
space is not shown in this figure. In Fig.3 we see the
H, component in the spiral plane, which is obtained
numerically by the PPS-FD solver.

1

Fig. 2.: coplanar spiral inductivity with two air
bridges, presentation in the spiral plane

The structure is discretized into half a million mesh
cells. This means that the computation of the magne-
tic field with a FDFD full-wave analysis requires
about 40 hours. In contrast to the full wave analysis
the PPS-FD solver requires only about 1 hour for the
magneto-static field of the spiral structure. This is the
same low computational effort as for the analysis of
the electro-static field. So, by using the PPS-FD sol-
ver for extracting the low frequency lumped element
model of the spiral structure we have a reduction in
computation time to 2.5%. With higher cell numbers
there would even be a higher reduction. The required
storage is reduced to 33%.
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Fig. 3.: Field H of the spiral inductor in
the spiral plane.
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Fig. 4: Absolute values of Sy and Si,, calculated by
the PPS-method, accurate reference solutions
by Finite-Difference full-wave analysis
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Fig. 5: Phases ¢ of Sy; and Sy, calculated by the
PPS-method, accurate reference solutions by
Finite-Difference full-wave analysis

The inductance of the spiral structure is calculated
easily by integrating the normal magnetic field along
the PPS. After calculating also the capacity of the
structure by the electromagnetic field, an equivalent
model of the structure can be derived for the wave-
length being ten times higher than the structure size.
From the equivalent circuit model we derive the S-
parameters which are shown in Fig. 4 and Fig. 5.
They are compared to the S-parameters which were
calculated by the FDFD full-wave analysis with 40
times higher computation time. we see a very good
agreement of the s-parameters in the frequency range
up to 5 GHz in phase and absolute value.
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As a further example we consider a microstrip bend

(Zc=50Q)with edge compensation, as can be seen in
Fig. 6. The PPS is again connecting the microstrip
conductor to the ground plane.
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Fig. 6: Microstrip bend with edge compensation,
presentation in the microstrip plane.
(sizes in 100Wm)

While the distance of the microstrostrip line to the
ground plane is 100pm, the distance of the line to the
upper boundary of the box is 500um. Fig. 7 shows
the calculated magneto-static field of the structure in
the microstrip plane.
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Fig. 7.: Field Hy of the microstrip bend in
the microstrip plane.

For further verification of our results, we calculated
the magneto-static field also for a triplate bend with
edge compensation, which is identical to the
microstrip bend of Fig.6 but with symmetry to the x-
axis. Using this symmetry the reference field has been
calculated refering to a method of same computation
effort, using also a scalar potential which has been
presented in ref. [5]. without using PPS, this method
is only restricted to structures of symmetry to the
metallization plane like the triplate. This field is com-
pared with the field, which was calculated by the

PPS-FD solver. The relative Difference of the results
was in the range of 10° %. The method of ref. [5]
has the same efficiency, but is restricted to symmetri-
cal striuctures. Using the method of ref. [5] for the
unsymmetric microstrip bend by approximation of the
symmetric structure would lead to an inacceptable
field deviation of 10%. Using the PPS-FD method
this approximation is not necessary.

Conclusion

We present a highly efficient PPS-Finite-Difference
solver for the fast calculation of the magneto-static
field. The PPS-method leads to the calculation of a
well defined scalar magnetic potential. It is applicable
without restriction to all types of lossless structures.
With that the numerical effort for the Finite-
Difference calculation of the magnetic field is as low
as in the electro-static case. Compared to the Finite
Difference Method in frequency domain the effort on
CPU-time for the magnetic field simulation is reduced
to less than 5%. The storage requirement decreases to
1/3. The PPS method is applicable without restriction
to all types of lossless structures. It can be used for
calculating Inductances and for the application in a
hybrid dynamic-static finite difference method.
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