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Abstract

We introduce a highly efficient magneto-static field

solver for the design of low frequency Iossless planar

circuit elements with arbitrary geometry. The field

solver is based on a finite difference formulation of a

scalar magnetic potential, using potential partitioning

surfaces (PPS). We present numerical results at the

examples of various planar circuit elements.

Introduction

For the design of planar circuit elements the given

structures are mostly extracted to a lumped element

circuit model. In many applications, the structures are

considered in a low frequency range in which the

lumped elements of the model are nearly independent

of the frequent y. This given, the electromagnetic

properties of the planar circuit elements can be

described by considering the electro- and magneto-

static fields in the structures. The given circuit ele-

ments may have a complicated geometry. With that a

flexible CAD-tool for the efficient simulation of the

static fields in lossless planar circuit structures with

arbitrary geometry is required.

The demand for a method of simulating the field in

structures with arbitrary geometry leads to a space

discretizing method like the Finite-Difference method

[1,2]. The structure of the circuit elements is discreti-

zed according to Yee’s scheme [2]. For the simulation

of the electro-static field Maxwells equations are

reduced to a Poisson-equation of the electro-static

potential. This reduction of considering only a scalar

potential instead of the three components of the

electric field leads to considerable savements in com-

putation time and storage.

While the electro-static field can be calculated in a

fast way by means of a scalar potential the calculati-

on of the magnetic field can not be performed directly

in such a simple way. This is because, in contrast to

the electric field, the contour integral of the magnetic

field does not disappear if a conductor is enclosed.

Thus in general, this would mean to calculate the field

in terms of three components which makes the com-

putational effort increase. The law of Biot-Savart can

not be used for the calculation because the current

distribution is unknown.

The PPS-Finite-Difference field solver

In this contribution we present a PPS-Finite-
Difference (PPS-FD) field solver for the efficient

simulation of the magneto-static field in arbitrary

lossless planar circuit structures. Compared with a

Finite Difference fullwave analysis the simulation of

the magnetic field with the PPS-FD solver requires

less then 5 % of the CPU-time and 33 % in memory.

The solver is also applicable for a hybrid dynamic-

static Finite-Diference method for efficient field simu-

lation at higher frequencies, as presented in [3]. The

PPS-FD-solver is based on the introduction of poten-

tial partitioning surfaces (PPS) into the structure,

connecting each conductor in the structure with the

outer boundary in a way that each integration path

around the conducting material crosses this potential

partitioning surface. Fulfilling this requirement the

choice of the exact position of the PPS is arbitrary.

Assuming the case of a lossless three-dimensional

structure, the consideration of the field is reduced to

the spatial region around the conducting material.

This region is cut by the PPS so that the resulting

subregion is bordered by two more surfaces which are

both sides of the partitioning surface. In this new

defined domain the magnetic field is irrotational and
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hence it can be described by a scalar magnetic poten-

tial M, in analogy to the electro-static case:

JHds=O =+ H=–g@M (1)

c

For the description of the potential in the subregions,

the divergence free magnetic field yields a simple

differential equation which leads to a fast numerical

algorithm for the calculation of the potential M.

div(~ grad A4) = O (2)

The boundary conditions of the field along electric

and magnetic walls are defined in a dual way to the

electro-static case. The integration of the field around

a conductor from one side of the PPS to its other side

yields a step of the potential when passing this PPS.

Fig. 1: Example of incorporation of a potential parti-

tioning surface (PPS) into a spiral structure.

Due to Ampere’s law, the difference between the po-

tential on one side and the other side of the parti-

tioning surface is equivalent to the current in the con-

ductor [4]. Thus, the integration of the magnetic field

from a point P- on one side of the partitioning surface

to the point P+ on the other side yields the difference

of the potentials Mat these points (Fig 1). This means

that there is a step in potential which has the value of

the current in the conductor.

P+

J
Hds=I * Al(P+)– M(F)= z (3)

p-

Fig. 1 shows an example of incorporation of a poten-

tial partitioning surface (PPS) into a spiral structure.

The PPS conects the conductor to the ground plane

completely. Crossing PPS’ are possible. a,b: The

integration of H arround the current I leads to a po-

tential step of the value I. c: The Integration arround

two currents, passing the integration path in the same

direction leads to two potential steps of the value I. e:

The integration arround two currents I, passing the

integration path in opposite

potential steps of the values

direction leads to two

I and -I. With that the

Integration around a conductor is allways put in re-

spect in the right way.

While the potential is non-continuous at the parti-

tioning surface, all the derivatives have to be conti-

nuous. This results from the requirement that the

magnetic field distribution is independent of the

choice of the local position of the potential parti-

tioning surface at the conductor.

al+m+n~ _ al+m+n~

II(P+) = H(F) + (4)
axlaymazn ~+ - dxldymazn~-

(for l,m,n>O). Those properties lead to the unique

description of the magnetic potential. The calculation

of the potential and the magnetic field can now be

performed in a fast numerical way. The differential

equation (2) of the potential is realized in the Finite-

Differencemethod in a cartesian mesh of elementary

cells. The potentials M are defined on the hyphens of

the mesh cells. Applying equation (2) in Finite-

Difference form of a linear equation to each mesh cell

of the given structure yields a solvable system of

equations. Additionally potentials at the boundaries of

the given structure are extracted by the boundary

conditions: While magnetic walls are aequipotential

surfaces with given potential M, the relations between

neighboring potentials on electric walls are given by

symmetrical characteristics.

Also the steps in potential are realized as a source

vector in the equation system. The system is then

analogous to the Finite-Difference description sy-

stem for the electro-static field. The solution of the

magneto-static system of equations yields a vector in

which all the potentials M of the structures cells are

included. After that the magneto-static field can be

determinate by the Finite-Difference quotient of the

magnetic potential distribution according to eqn. (l).

Numerical results

In the following we present numerical results of the

PPS-FD solver. First we consider the magneto-static

field in a coplanar spiral inductor on silicium

substrate. As in the example of Fig. 1, the PPS con-

nects the spiral conductor vertically to the ground

plane. The conductor route leading to the center of the

spiral is crossed by the spiral in form of two air-
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bridges. By
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following the spiral route the potential

surface crosses itself below the air-

bridges. In Fig. 2. we see the spiral structure with its

discretization steps. The discretization in the inner

space is not shown in this figure. In Fig.3 we see the

H. component in the spiral plane, which is obtained

numerically by the PPS-FD solver.

Fig. 2.: coplanar spiral inductivity with two air

bridges, presentation in the spiral plane

The structure is discretized into half a million mesh

cells. This means that the computation of the magne-

tic field with a FDFD full-wave analysis requires

about 40 hours. In contrast to the full wave analysis

the PPS-FD solver requires only about 1 hour for the

magneto-static field of the spiral structure. This is the

same low computational effort as for the analysis of

the electro-static field. So, by using the PPS-FD sol-

ver for extracting the low frequency lumped element

model of the spiral structure we have a reduction in

computation time to 2.59Z0. With higher cell numbers

there would even be a higher reduction. The required

storage is reduced to 33%.

LY

Fig. 3.: Field H, of the spiral inductor in

the spiral plane,
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Fig. 4: Absolute values of Sll and Slz, calculated by

the PPS-method, accurate reference solutions

by Finite-Difference full-wave analysis
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Fig. 5: Phases q of Sll and Slz, calculated by the

PPS-method, accurate reference solutions by

Finite-Difference full-wave analysis

The inductance of the spiral structure is calculated

easily by integrating the normal magnetic field along

the PPS. After calculating also the capacity of the

structure by the electromagnetic field, an equivalent

model of the structure can be derived for the wave-

length being ten times higher than the structure size.

From the equivalent circuit model we derive the S-

parameters which are shown in Fig. 4 and Fig. 5.

They are compared to the S-parameters which were

calculated by the FDFD full-wave analysis with 40

times higher computation time. we see a very good

agreement of the s-parameters in the frequency range

up to 5 GHz in phase and absolute value.
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As a further example we consider a microstrip bend

(Zc=50Q)with edge compensation, as can be seen in

Fig. 6. The PPS is again connecting the microstrip

conductor to the ground plane,

T’11111111‘1 u
n

H

Fig. 6: Microstrip bend with edge compensation,

presentation in the microstrip plane.

(sizes in 100pm)

While the distance of the microstrostrip line to the

ground plane is 100~m, the distance of the line to the

upper boundary of the box is 500~m. Fig. 7 shows

the calculated magneto-static field of the structure in

the microstrip plane.

Fig. 7.: Field H. of the microstrip bend in

the microstrip plane.

For further verification of our results, we calculated

the magneto-static field also for a triplate bend with

edge compensation, which is identical to the

micro strip bend of Fig.6 but with symetry to the x-

axis. Using this symetry the reference field has been

calculated refering to a method of same computation

effort, using also a scalar potential which has been

presented in ref. [5]. without using PPS, this method

is only restricted to structures of symmetry to the

metallization plane like the triplate. This field is com-

pared with the field, which was calculated by the

PPS-FD solver. The relative Difference of the results

was in the range of 10- 6 ‘%. The method of ref. [5]

has the same efficiency, but is restricted to symmetri-

cal strictures. Using the method of ref. [5] for the

unsymmetric microstrip bend by approximation of the

symmetric structure would lead to an unacceptable

field deviation of 10%. Using the PPS-FD method

this approximation is not necessary.

Conclusion

We present a highly efficient PPS-Finite-Difference
solver for the fast calculation of the magneto-static
field. The PPS-method leads to the calculation of a

well defined scalar magnetic potential. It is applicable

without restriction to all types of lossless structures.

With that the numerical effort for the Finite-

Difference calculation of the magnetic field is as low

as in the electro-static case. Compared to the Finite

Difference Method in frequency domain the effort on

CPU-time for the magnetic field simulation is reduced

to less than 5910.The storage requirement decreases to

1/3. The PPS method is applicable without restriction

to all types of lossless structures. It can be used for

calculating Inductances and for the application in a

hybrid dynamic-static finite difference method.
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